Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38315312

RESUMO

PURPOSE: Altered hemodynamics caused by the presence of an endovascular device may undermine the success of peripheral stenting procedures. Flow-enhanced stent designs are under investigation to recover physiological blood flow patterns in the treated artery and reduce long-term complications. However, flow-enhanced designs require the development of customised manufacturing processes that consider the complex behaviour of Nickel-Titanium (Ni-Ti). While the manufacturing routes of traditional self-expanding Ni-Ti stents are well-established, the process to introduce alternative stent designs is rarely reported in the literature, with much of this information (especially related to shape-setting step) being commercially sensitive and not reaching the public domain, as yet. METHODS: A reliable manufacturing method was developed and improved to induce a helical ridge onto laser-cut and wire-braided Nickel-Titanium self-expanding stents. The process consisted of fastening the stent into a custom-built fixture that provided the helical shape, which was followed by a shape-setting in air furnace and rapid quenching in cold water. The parameters employed for the shape-setting in air furnace were thoroughly explored, and their effects assessed in terms of the mechanical performance of the device, material transformation temperatures and surface finishing. RESULTS: Both stents were successfully imparted with a helical ridge and the optimal heat treatment parameters combination was found. The settings of 500 °C/30 min provided mechanical properties comparable with the original design, and transformation temperatures suitable for stenting applications (Af = 23.5 °C). Microscopy analysis confirmed that the manufacturing process did not alter the surface finishing. Deliverability testing showed the helical device could be loaded onto a catheter delivery system and deployed with full recovery of the expanded helical configuration. CONCLUSION: This demonstrates the feasibility of an additional heat treatment regime to allow for helical shape-setting of laser-cut and wire-braided devices that may be applied to further designs.

2.
Comput Methods Programs Biomed ; 242: 107781, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683458

RESUMO

BACKGROUND AND OBJECTIVES: Bioresorbable braided stents, typically made of bioresorbable polymers such as poly-l-lactide (PLLA), have great potential in the treatment of critical limb ischemia, particularly in cases of long-segment occlusions and lesions with high angulation. However, the successful adoption of these devices is limited by their low radial stiffness and reduced elastic modulus of bioresorbable polymers. This study proposes a computational optimization procedure to enhance the mechanical performance of bioresorbable braided stents and consequently improve the treatment of critical limb ischemia. METHODS: Finite element analyses were performed to replicate the radial crimping test and investigate the implantation procedure of PLLA braided stents. The stent geometry was characterized by four design parameters: number of wires, wire diameter, initial stent diameter, and braiding angle. Manufacturing constraints were considered to establish the design space. The mechanical performance of the stent was evaluated by defining the radial force, foreshortening, and peak maximum principal stress of the stent as objectives and constraint functions in the optimization problem. An approximate relationship between the objectives, constraint, and the design parameters was defined using design of experiment coupled with surrogate modelling. Surrogate models were then interrogated within the design space, and a multi-objective design optimization was conducted. RESULTS: The simulation of radial crimping was successfully validated against experimental data. The radial force was found to be primarily influenced by the number of wires, wire diameter, and braiding angle, with the wire diameter having the most significant impact. Foreshortening was predominantly affected by the braiding angle. The peak maximum principal stress exhibited contrasting behaviour compared to the radial force for all parameters, with the exception of the number of wires. Among the Pareto-optimal design candidates, feasible peak maximum principal stress values were observed, with the braiding angle identified as the differentiating factor among these candidates. CONCLUSIONS: The exploration of the design space enabled both the understanding of the impact of design parameters on the mechanical performance of bioresorbable braided stents and the successful identification of optimal design candidates. The optimization framework contributes to the advancement of innovative bioresorbable braided stents for the effective treatment of critical limb ischemia.


Assuntos
Implantes Absorvíveis , Isquemia Crônica Crítica de Membro , Humanos , Estresse Mecânico , Stents , Polímeros , Desenho de Prótese
3.
J Mech Behav Biomed Mater ; 138: 105568, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459705

RESUMO

Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100µm, and d=150µm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.


Assuntos
Poliésteres , Stents , Modelos Teóricos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...